
1 © 2001-2003 Marty Hall, Larry Brown http://www.corewebprogramming.com

core

programming

Basic Object-Oriented
Programming in Java

Introduction to Object Oriented Programming2 www.corewebprogramming.com

Agenda
• Similarities and differences between Java

and C++
• Object-oriented nomenclature and

conventions
• Instance variables (fields)
• Methods (member functions)
• Constructors

Introduction to Object Oriented Programming3 www.corewebprogramming.com

Object-Oriented Programming
in Java

• Similarities with C++
– User-defined classes can be used the same way as built-in

types.
– Basic syntax

• Differences from C++
– Methods (member functions) are the only function type
– Object is the topmost ancestor for all classes
– All methods use the run-time, not compile-time, types

(i.e. all Java methods are like C++ virtual functions)
– The types of all objects are known at run-time
– All objects are allocated on the heap (always safe to

return objects from methods)
– Single inheritance only

Introduction to Object Oriented Programming4 www.corewebprogramming.com

Object-Oriented Nomenclature
• “Class” means a category of things

– A class name can be used in Java as the type of a field or
local variable or as the return type of a function (method)

• “Object” means a particular item that
belongs to a class
– Also called an “instance”

• For example, consider the following line:
String s1 = "Hello";

– Here, String is the class, and the variable s1 and the value
"Hello" are objects (or “instances of the String class”)

Introduction to Object Oriented Programming5 www.corewebprogramming.com

Example 1: Instance Variables
(“Fields” or “Data Members”)

class Ship1 {
public double x, y, speed, direction;
public String name;

}

public class Test1 {
public static void main(String[] args) {
Ship1 s1 = new Ship1();
s1.x = 0.0;
s1.y = 0.0;
s1.speed = 1.0;
s1.direction = 0.0; // East
s1.name = "Ship1";
Ship1 s2 = new Ship1();
s2.x = 0.0;
s2.y = 0.0;
s2.speed = 2.0;
s2.direction = 135.0; // Northwest
s2.name = "Ship2";
...

Introduction to Object Oriented Programming6 www.corewebprogramming.com

Instance Variables: Example
(Continued)

...
s1.x = s1.x + s1.speed

* Math.cos(s1.direction * Math.PI / 180.0);
s1.y = s1.y + s1.speed

* Math.sin(s1.direction * Math.PI / 180.0);
s2.x = s2.x + s2.speed

* Math.cos(s2.direction * Math.PI / 180.0);
s2.y = s2.y + s2.speed

* Math.sin(s2.direction * Math.PI / 180.0);
System.out.println(s1.name + " is at ("

+ s1.x + "," + s1.y + ").");
System.out.println(s2.name + " is at ("

+ s2.x + "," + s2.y + ").");
}

}

Introduction to Object Oriented Programming7 www.corewebprogramming.com

Instance Variables: Results
• Compiling and Running:

javac Test1.java
java Test1

Output:
Ship1 is at (1,0).
Ship2 is at (-1.41421,1.41421).

Introduction to Object Oriented Programming8 www.corewebprogramming.com

Example 1: Major Points
• Java naming convention
• Format of class definitions
• Creating classes with “new”
• Accessing fields with

“variableName.fieldName”

Introduction to Object Oriented Programming9 www.corewebprogramming.com

Java Naming Conventions
• Leading uppercase letter in class name

public class MyClass {
...

}

• Leading lowercase letter in field, local
variable, and method (function) names
– myField, myVar, myMethod

Introduction to Object Oriented Programming10 www.corewebprogramming.com

First Look at Java Classes
• The general form of a simple class is

modifier class Classname {

modifier data-type field1;
modifier data-type field2;
...
modifier data-type fieldN;

modifier Return-Type methodName1(parameters) {
//statements

}

...

modifier Return-Type methodName2(parameters) {
//statements

}
}

Introduction to Object Oriented Programming11 www.corewebprogramming.com

Objects and References
• Once a class is defined, you can easily

declare a variable (object reference) of the
class

Ship s1, s2;
Point start;
Color blue;

• Object references are initially null
– The null value is a distinct type in Java and should not

be considered equal to zero
– A primitive data type cannot be cast to an object (use

wrapper classes)
• The new operator is required to explicitly

create the object that is referenced
ClassName variableName = new ClassName();

Introduction to Object Oriented Programming12 www.corewebprogramming.com

Accessing Instance Variables
• Use a dot between the variable name and the field

name, as follows:
variableName.fieldName

• For example, Java has a built-in class called Point
that has x and y fields

Point p = new Point(2, 3); // Build a Point object
int xSquared = p.x * p.x; // xSquared is 4
int xPlusY = p.x + p.y; // xPlusY is 5
p.x = 7;
xSquared = p.x * p.x; // Now xSquared is 49

• One major exception applies to the “access fields
through varName.fieldName” rule
– Methods can access fields of current object without varName
– This will be explained when methods (functions) are discussed

Introduction to Object Oriented Programming13 www.corewebprogramming.com

Example 2: Methods
class Ship2 {

public double x=0.0, y=0.0, speed=1.0, direction=0.0;
public String name = "UnnamedShip";

private double degreesToRadians(double degrees) {
return(degrees * Math.PI / 180.0);

}

public void move() {
double angle = degreesToRadians(direction);
x = x + speed * Math.cos(angle);
y = y + speed * Math.sin(angle);

}

public void printLocation() {
System.out.println(name + " is at ("

+ x + "," + y + ").");
}

}

Introduction to Object Oriented Programming14 www.corewebprogramming.com

Methods (Continued)
public class Test2 {
public static void main(String[] args) {
Ship2 s1 = new Ship2();
s1.name = "Ship1";
Ship2 s2 = new Ship2();
s2.direction = 135.0; // Northwest
s2.speed = 2.0;
s2.name = "Ship2";
s1.move();
s2.move();
s1.printLocation();
s2.printLocation();

}
}
• Compiling and Running:

javac Test2.java
java Test2

• Output:
Ship1 is at (1,0).
Ship2 is at (-1.41421,1.41421).

Introduction to Object Oriented Programming15 www.corewebprogramming.com

Example 2: Major Points
• Format of method definitions
• Methods that access local fields
• Calling methods
• Static methods
• Default values for fields
• public/private distinction

Introduction to Object Oriented Programming16 www.corewebprogramming.com

Defining Methods
(Functions Inside Classes)

• Basic method declaration:
public ReturnType methodName(type1 arg1,

type2 arg2, ...) {
...
return(something of ReturnType);

}

• Exception to this format: if you declare the
return type as void
– This special syntax that means “this method isn’t going to

return a value – it is just going to do some side effect like
printing on the screen”

– In such a case you do not need (in fact, are not permitted),
a return statement that includes a value to be returned

Introduction to Object Oriented Programming17 www.corewebprogramming.com

Examples of Defining Methods
• Here are two examples:

– The first squares an integer
– The second returns the faster of two Ship objects, assuming that a

class called Ship has been defined that has a field named speed
// Example function call:
// int val = square(7);

public int square(int x) {
return(x*x);

}

// Example function call:
// Ship faster = fasterShip(someShip, someOtherShip);

public Ship fasterShip(Ship ship1, Ship ship2) {
if (ship1.speed > ship2.speed) {

return(ship1);
} else {

return(ship2);
}

}

Introduction to Object Oriented Programming18 www.corewebprogramming.com

Exception to the “Field Access
with Dots” Rule

• You normally access a field through
variableName.fieldName

but an exception is when a method of a class
wants to access fields of that same class
– In that case, omit the variable name and the dot
– For example, a move method within the Ship class might do:

public void move() {
x = x + speed * Math.cos(direction);
...

}
• Here, x, speed, and direction are all fields within the class

that the move method belongs to, so move can refer to the fields
directly

– As we’ll see later, you still can use the
variableName.fieldName approach, and Java invents a variable
called this that can be used for that purpose

Introduction to Object Oriented Programming19 www.corewebprogramming.com

Calling Methods
• The term “method” means “function associated

with an object” (I.e., “member function”)
– The usual way that you call a method is by doing the following:

variableName.methodName(argumentsToMethod);

• For example, the built-in String class has a
method called toUpperCase that returns an
uppercase variation of a String
– This method doesn’t take any arguments, so you just put empty

parentheses after the function (method) name.

String s1 = "Hello";

String s2 = s1.toUpperCase(); // s2 is now "HELLO"

Introduction to Object Oriented Programming20 www.corewebprogramming.com

Calling Methods (Continued)
• There are two exceptions to requiring a variable

name for a method call
– Calling a method defined inside the current class definition
– Functions (methods) that are declared “static”

• Calling a method that is defined inside the current
class
– You don’t need the variable name and the dot
– For example, a Ship class might define a method called

degreeesToRadians, then, within another function in the same class
definition, do this:

double angle = degreesToRadians(direction);

• No variable name and dot is required in front of
degreesToRadians since it is defined in the same class as the
method that is calling it

Introduction to Object Oriented Programming21 www.corewebprogramming.com

Static Methods
• Static functions typically do not need to access

any fields within their class and are almost like
global functions in other languages

• You can call a static method through the class
name

ClassName.functionName(arguments);

– For example, the Math class has a static method called cos that
expects a double precision number as an argument

• So you can call Math.cos(3.5) without ever having any object
(instance) of the Math class

• Note on the main method
– Since the system calls main without first creating an object, static

methods are the only type of methods that main can call directly (i.e.
without building an object and calling the method of that object)

Introduction to Object Oriented Programming22 www.corewebprogramming.com

Method Visibility
• public/private distinction

– A declaration of private means that “outside” methods
can’t call it -- only methods within the same class can

• Thus, for example, the main method of the Test2
class could not have done

double x = s1.degreesToRadians(2.2);
– Attempting to do so would have resulted in an

error at compile time
– Only say public for methods that you want to guarantee

your class will make available to users
– You are free to change or eliminate private methods

without telling users of your class about

Introduction to Object Oriented Programming23 www.corewebprogramming.com

Declaring Variables in Methods
• When you declare a local variable inside of

a method, the normal declaration syntax
looks like:

Type varName = value;

• The value part can be:
– A constant,
– Another variable,
– A function (method) call,
– A “constructor” invocation (a special type of function

prefaced by new that builds an object),
– Some special syntax that builds an object without

explicitly calling a constructor (e.g., strings)

Introduction to Object Oriented Programming24 www.corewebprogramming.com

Declaring Variables in Methods:
Examples

int x = 3;
int y = x;

// Special syntax for building a String object
String s1 = "Hello";

// Building an object the normal way
String s2 = new String("Goodbye");

String s3 = s2;
String s4 = s3.toUpperCase(); // Result: s4 is "GOODBYE"

// Assume you defined a findFastestShip method that
// returns a Ship
Ship ship1 = new Ship();
Ship ship2 = ship1;
Ship ship3 = findFastestShip();

Introduction to Object Oriented Programming25 www.corewebprogramming.com

Example 3: Constructors
class Ship3 {
public double x, y, speed, direction;
public String name;

public Ship3(double x, double y,
double speed, double direction,
String name) {

this.x = x; // "this" differentiates instance vars
this.y = y; // from local vars.
this.speed = speed;
this.direction = direction;
this.name = name;

}

private double degreesToRadians(double degrees) {
return(degrees * Math.PI / 180.0);

}
...

Introduction to Object Oriented Programming26 www.corewebprogramming.com

Constructors (Continued)
public void move() {
double angle = degreesToRadians(direction);
x = x + speed * Math.cos(angle);
y = y + speed * Math.sin(angle);

}
public void printLocation() {
System.out.println(name + " is at ("

+ x + "," + y + ").");
}

}

public class Test3 {
public static void main(String[] args) {
Ship3 s1 = new Ship3(0.0, 0.0, 1.0, 0.0, "Ship1");
Ship3 s2 = new Ship3(0.0, 0.0, 2.0, 135.0, "Ship2");
s1.move();
s2.move();
s1.printLocation();
s2.printLocation();

}
}

Introduction to Object Oriented Programming27 www.corewebprogramming.com

Constructor Example: Results
• Compiling and Running:

javac Test3.java
java Test3

• Output:
Ship1 is at (1,0).
Ship2 is at (-1.41421,1.41421).

Introduction to Object Oriented Programming28 www.corewebprogramming.com

Example 3: Major Points
• Format of constructor definitions
• The “this” reference
• Destructors (not!)

Introduction to Object Oriented Programming29 www.corewebprogramming.com

Constructors
• Constructors are special functions called when a

class is created with new
– Constructors are especially useful for supplying values of fields
– Constructors are declared through:

public ClassName(args) {
...

}

– Notice that the constructor name must exactly match the class name
– Constructors have no return type (not even void), unlike a regular

method
– Java automatically provides a zero-argument constructor if and only

if the class doesn’t define it’s own constructor
• That’s why you could say

Ship1 s1 = new Ship1();
in the first example, even though a constructor was never
defined

Introduction to Object Oriented Programming30 www.corewebprogramming.com

The this Variable
• The this object reference can be used inside any

non-static method to refer to the current object
• The common uses of the this reference are:

1. To pass a reference to the current object as a parameter to other
methods

someMethod(this);

2. To resolve name conflicts
• Using this permits the use of instance variables in methods

that have local variables with the same name

– Note that it is only necessary to say this.fieldName when you
have a local variable and a class field with the same name;
otherwise just use fieldName with no this

Introduction to Object Oriented Programming31 www.corewebprogramming.com

Destructors

This Page Intentionally Left Blank

Introduction to Object Oriented Programming32 www.corewebprogramming.com

Summary
• Class names should start with upper case; method

names with lower case
• Methods must define a return type or void if no

result is returned
• Access fields via objectName.fieldName
• Access methods via objectName.methodName(args)
• If a method accepts no arguments, the arg-list in the

method declaration is empty instead of void as in C
• Static methods do not require an instance of the

class; they can be accessed through the class name
• The this reference refers to the current object
• Class constructors do not declare a return type
• Java performs its own memory management and

requires no destructors

33 © 2001-2003 Marty Hall, Larry Brown http://www.corewebprogramming.com

core

programming

Questions?

	Basic Object-Oriented Programming in Java
	Agenda
	Object-Oriented Programming in Java
	Object-Oriented Nomenclature
	Example 1: Instance Variables (“Fields” or “Data Members”)
	Instance Variables: Example (Continued)
	Instance Variables: Results
	Example 1: Major Points
	Java Naming Conventions
	First Look at Java Classes
	Objects and References
	Accessing Instance Variables
	Example 2: Methods
	Methods (Continued)
	Example 2: Major Points
	Defining Methods(Functions Inside Classes)
	Examples of Defining Methods
	Exception to the “Field Access with Dots” Rule
	Calling Methods
	Calling Methods (Continued)
	Static Methods
	Method Visibility
	Declaring Variables in Methods
	Declaring Variables in Methods:Examples
	Example 3: Constructors
	Constructors (Continued)
	Constructor Example: Results
	Example 3: Major Points
	Constructors
	The this Variable
	Destructors
	Summary
	Questions?

		brown@corewebprogramming.com
	2003-01-03T23:13:30-0500
	Lawrence M. Brown
	Copyright 2001-2003 Core Web Programming

