
1 © 2001-2003 Marty Hall, Larry Brown http://www.corewebprogramming.com

core

programming

Advanced
Object-Oriented

Programming in Java

Advanced Object Oriented Programming2 www.corewebprogramming.com

Agenda
• Overloading
• Designing “real” classes
• Inheritance
• Advanced topics

– Abstract classes
– Interfaces
– Understanding polymorphism
– Setting a CLASSPATH and using packages
– Visibility modifiers
– Creating on-line documentation using JavaDoc

Advanced Object Oriented Programming3 www.corewebprogramming.com

Example 4: Overloading
class Ship4 {
public double x=0.0, y=0.0, speed=1.0, direction=0.0;
public String name;

public Ship4(double x, double y,
double speed, double direction,
String name) {

this.x = x;
this.y = y;
this.speed = speed;
this.direction = direction;
this.name = name;

}

public Ship4(String name) {
this.name = name;

}

private double degreesToRadians(double degrees) {
return(degrees * Math.PI / 180.0);

}
...

Advanced Object Oriented Programming4 www.corewebprogramming.com

Overloading (Continued)
...

public void move() {
move(1);

}

public void move(int steps) {
double angle = degreesToRadians(direction);
x = x + (double)steps * speed * Math.cos(angle);
y = y + (double)steps * speed * Math.sin(angle);

}

public void printLocation() {
System.out.println(name + " is at ("

+ x + "," + y + ").");
}

}

Advanced Object Oriented Programming5 www.corewebprogramming.com

Overloading: Testing and
Results

public class Test4 {
public static void main(String[] args) {
Ship4 s1 = new Ship4("Ship1");
Ship4 s2 = new Ship4(0.0, 0.0, 2.0, 135.0, "Ship2");
s1.move();
s2.move(3);
s1.printLocation();
s2.printLocation();

}
}

• Compiling and Running:
javac Test4.java
java Test4

• Output:
Ship1 is at (1,0).
Ship2 is at (-4.24264,4.24264).

Advanced Object Oriented Programming6 www.corewebprogramming.com

Overloading: Major Points
• Idea

– Allows you to define more than one function or
constructor with the same name

• Overloaded functions or constructors must differ in
the number or types of their arguments (or both), so
that Java can always tell which one you mean

• Simple examples:
– Here are two square methods that differ only in the

type of the argument; they would both be permitted inside
the same class definition.

// square(4) is 16
public int square(int x) { return(x*x); }

// square("four") is "four four"
public String square(String s) {
return(s + " " + s);

}

Advanced Object Oriented Programming7 www.corewebprogramming.com

Example 5: OOP Design and
Usage

/** Ship example to demonstrate OOP in Java. */

public class Ship {
private double x=0.0, y=0.0, speed=1.0, direction=0.0;
private String name;
…
/** Get current X location. */

public double getX() {
return(x);

}

/** Set current X location. */

public void setX(double x) {
this.x = x;

}

Advanced Object Oriented Programming8 www.corewebprogramming.com

Example 5: Major Points
• Encapsulation

– Lets you change internal representation and data
structures without users of your class changing their code

– Lets you put constraints on values without users of your
class changing their code

– Lets you perform arbitrary side effects without users of
your class changing their code

• Comments and JavaDoc
– See later slides (or book) for details

Advanced Object Oriented Programming9 www.corewebprogramming.com

Example 6: Inheritance
public class Speedboat extends Ship {
private String color = "red";

public Speedboat(String name) {
super(name);
setSpeed(20);

}

public Speedboat(double x, double y,
double speed, double direction,
String name, String color) {

super(x, y, speed, direction, name);
setColor(color);

}

public void printLocation() {
System.out.print(getColor().toUpperCase() + " ");
super.printLocation();

}

...
}

Advanced Object Oriented Programming10 www.corewebprogramming.com

Inheritance Example: Testing
public class SpeedboatTest {
public static void main(String[] args) {
Speedboat s1 = new Speedboat("Speedboat1");
Speedboat s2 = new Speedboat(0.0, 0.0, 2.0, 135.0,

"Speedboat2", "blue");
Ship s3 = new Ship(0.0, 0.0, 2.0, 135.0, "Ship1");
s1.move();
s2.move();
s3.move();
s1.printLocation();
s2.printLocation();
s3.printLocation();

}
}

Advanced Object Oriented Programming11 www.corewebprogramming.com

Inheritance Example: Result
• Compiling and Running:

javac SpeedboatTest.java

– The above calls javac on Speedboat.java and
Ship.java automatically
java SpeedboatTest

• Output
RED Speedboat1 is at (20,0).
BLUE Speedboat2 is at (-1.41421,1.41421).
Ship1 is at (-1.41421,1.41421).

Advanced Object Oriented Programming12 www.corewebprogramming.com

Example 6: Major Points
• Format for defining subclasses
• Using inherited methods
• Using super(…) for inherited constructors

– Only when the zero-arg constructor is not OK
• Using super.someMethod(…) for inherited

methods
– Only when there is a name conflict

Advanced Object Oriented Programming13 www.corewebprogramming.com

Inheritance
• Syntax for defining subclasses

public class NewClass extends OldClass {
...

}

• Nomenclature:
– The existing class is called the superclass, base class or parent class
– The new class is called the subclass, derived class or child class

• Effect of inheritance
– Subclasses automatically have all public fields and methods of the

parent class
– You don’t need any special syntax to access the inherited fields and

methods; you use the exact same syntax as with locally defined
fields or methods.

– You can also add in fields or methods not available in the superclass
• Java doesn’t support multiple inheritance

Advanced Object Oriented Programming14 www.corewebprogramming.com

Inherited constructors and
super(...)

• When you instantiate an object of a subclass, the
system will automatically call the superclass
constructor first
– By default, the zero-argument superclass constructor is called

unless a different constructor is specified
– Access the constructor in the superclass through

super(args)

– If super(…) is used in a subclass constructor, then super(…)
must be the first statement in the constructor

• Constructor life-cycle
– Each constructor has three phases:

1. Invoke the constructor of the superclass
2. Initialize all instance variables based on their initialization

statements
3. Execute the body of the constructor

Advanced Object Oriented Programming15 www.corewebprogramming.com

Overridden methods and
super.method(...)

• When a class defines a method using the same name,
return type, and arguments as a method in the
superclass, then the class overrides the method in the
superclass
– Only non-static methods can be overridden

• If there is a locally defined method and an inherited
method that have the same name and take the same
arguments, you can use the following to refer to the
inherited method

super.methodName(...)

– Successive use of super (super.super.methodName) will not
access overridden methods higher up in the hierarchy; super can
only be used to invoke overridden methods from within the class
that does the overriding

Advanced Object Oriented Programming16 www.corewebprogramming.com

Advanced OOP Topics
• Abstract classes
• Interfaces
• Polymorphism details
• CLASSPATH
• Packages
• Visibility other than public or private
• JavaDoc details

Advanced Object Oriented Programming17 www.corewebprogramming.com

Abstract Classes
• Idea

– Abstract classes permit declaration of classes that define only part of
an implementation, leaving the subclasses to provide the details

• A class is considered abstract if at least one
method in the class has no implementation
– An abstract method has no implementation (known in C++ as a pure

virtual function)
– Any class with an abstract method must be declared abstract
– If the subclass overrides all the abstract methods in the superclass,

than an object of the subclass can be instantiated
• An abstract class can contain instance variables

and methods that are fully implemented
– Any subclass can override a concrete method inherited from the

superclass and declare the method abstract

Advanced Object Oriented Programming18 www.corewebprogramming.com

Abstract Classes (Continued)
• An abstract class cannot be instantiated,

however references to an abstract class can
be declared

public abstract ThreeDShape {
public abstract void drawShape(Graphics g);
public abstract void resize(double scale);

}

ThreeDShape s1;
ThreeDShape[] arrayOfShapes
= new ThreeDShape[20];

• Classes from which objects can be
instantiated are called concrete classes

Advanced Object Oriented Programming19 www.corewebprogramming.com

Interfaces
• Idea

– Interfaces define a Java type consisting purely of
constants and abstract methods

– An interface does not implement any of the methods, but
imposes a design structure on any class that uses the
interface

– A class that implements an interface must either provide
definitions for all methods or declare itself abstract

Advanced Object Oriented Programming20 www.corewebprogramming.com

Interfaces (Continued)
• Modifiers

– All methods in an interface are implicitly abstract and the
keyword abstract is not required in a method declaration

– Data fields in an interface are implicitly static
final (constants)

– All data fields and methods in an interface are implicitly
public

public interface Interface1 {
DataType CONSTANT1 = value1;
DataType CONSTANT2 = value2;

ReturnType1 method1(ArgType1 arg);
ReturnType2 method2(ArgType2 arg);

}

Advanced Object Oriented Programming21 www.corewebprogramming.com

Interfaces (Continued)
• Extending Interfaces

– Interfaces can extend other interfaces, which brings rise to sub-
interfaces and super-interfaces

– Unlike classes, however, an interface can extend more than one
interface at a time

public interface Displayable extends Drawable, Printable {
// Additonal constants and abstract methods
...

}

• Implementing Multiple Interfaces
– Interfaces provide a form of multiple inheritance because a class can

implement more than one interface at a time
public class Circle extends TwoDShape

implements Drawable, Printable {
...

}

Advanced Object Oriented Programming22 www.corewebprogramming.com

Polymorphism
• “Polymorphic” literally means “of multiple shapes”

and in the context of object-oriented programming,
polymorphic means “having multiple behavior”

• A polymorphic method results in different actions
depending on the object being referenced
– Also known as late binding or run-time binding

• In practice, polymorphism is used in conjunction
with reference arrays to loop through a collection
of objects and to access each object's
polymorphic method

Advanced Object Oriented Programming23 www.corewebprogramming.com

Polymorphism: Example
public class PolymorphismTest {
public static void main(String[] args) {

Ship[] ships = new Ship[3];

ships[0] = new Ship(0.0, 0.0, 2.0, 135.0, "Ship1");
ships[1] = new Speedboat("Speedboat1");
ships[2] = new Speedboat(0.0, 0.0, 2.0, 135.0,

"Speedboat2", "blue");
for(int i=0; i<ships.length ; i++) {
ships[i].move();
ships[i].printLocation();

}
}

}

Advanced Object Oriented Programming24 www.corewebprogramming.com

Polymorphism: Result
• Compiling and Running:

javac PolymorphismTest.java
java PolymorphismTest

• Output
RED Speedboat1 is at (20,0).
BLUE Speedboat2 is at (-1.41421,1.41421).
Ship1 is at (-1.41421,1.41421).

Advanced Object Oriented Programming25 www.corewebprogramming.com

CLASSPATH
• The CLASSPATH environment variable

defines a list of directories in which to look
for classes
– Default = current directory and system libraries
– Best practice is to not set this when first learning Java!

• Setting the CLASSPATH
set CLASSPATH = .;C:\java;D:\cwp\echoserver.jar
setenv CLASSPATH .:~/java:/home/cwp/classes/

– The period indicates the current working directory
• Supplying a CLASSPATH

javac –classpath .;D:\cwp WebClient.java
java –classpath .;D:\cwp WebClient

Advanced Object Oriented Programming26 www.corewebprogramming.com

Creating Packages
• A package lets you group classes in

subdirectories to avoid accidental name conflicts
– To create a package:

1. Create a subdirectory with the same name as the desired
package and place the source files in that directory

2. Add a package statement to each file

package packagename;

3. Files in the main directory that want to use the package should
include

import packagename.*;

• The package statement must be the first
statement in the file

• If a package statement is omitted from a file, then
the code is part of the default package that has
no name

Advanced Object Oriented Programming27 www.corewebprogramming.com

Package Directories
• The package hierarchy reflects the file

system directory structure

– The root of any package must be accessible through a
Java system default directory or through the CLASSPATH
environment variable

Package java.math

Advanced Object Oriented Programming28 www.corewebprogramming.com

Visibility Modifiers
• public

– This modifier indicates that the variable or method can be
accessed anywhere an instance of the class is accessible

– A class may also be designated public, which means
that any other class can use the class definition

– The name of a public class must match the filename, thus
a file can have only one public class

• private
– A private variable or method is only accessible from

methods within the same class
– Declaring a class variable private "hides" the data within

the class, making the data available outside the class only
through method calls

Advanced Object Oriented Programming29 www.corewebprogramming.com

Visibility Modifiers, cont.
• protected

– Protected variables or methods can only be accessed by
methods within the class, within classes in the same
package, and within subclasses

– Protected variables or methods are inherited by
subclasses of the same or different package

• [default]
– A variable or method has default visibility if a modifier is

omitted
– Default visibility indicates that the variable or method can

be accessed by methods within the class, and within
classes in the same package

– Default variables are inherited only by subclasses in the
same package

Advanced Object Oriented Programming30 www.corewebprogramming.com

Protected Visibility: Example

• Cake, ChocolateCake, and Pie inherit a calories field
• However, if the code in the Cake class had a reference to object of

type Pie, the protected calories field of the Pie object could not
be accessed in the Cake class
– Protected fields of a class are not accessible outside its branch of the class hierarchy

(unless the complete tree hierarchy is in the same package)

Advanced Object Oriented Programming31 www.corewebprogramming.com

Default Visibility: Example

• Even through inheritance, the fat data field cannot cross the
package boundary
– Thus, the fat data field is accessible through any Dessert, Pie, and Cake

object within any code in the Dessert package
– However, the ChocolateCake class does not have a fat data field, nor can the fat

data field of a Dessert, Cake, or Pie object be accessed from code in the
ChocolateCake class

Advanced Object Oriented Programming32 www.corewebprogramming.com

Visibility Summary
 Modifiers

Data Fields and Methods public protected default private
Accessible from same class? yes yes yes yes

Accessible to classes (nonsubclass) yes yes yes no
from the same package?

Accessible to subclass from the yes yes yes no
same package?

Accessible to classes (nonsubclass) yes no no no
from different package?

Accessible to subclasses from yes no no no
different package?

Inherited by subclass in the yes yes yes no
same package?

Inherited by subclass in different yes yes no no
package?

Advanced Object Oriented Programming33 www.corewebprogramming.com

Other Modifiers
• final

– For a class, indicates that it cannot be subclassed
– For a method or variable, cannot be changed at runtime or

overridden in subclasses
• synchronized

– Sets a lock on a section of code or method
– Only one thread can access the same synchronized code

at any given time
• transient

– Variables are not stored in serialized objects sent over the
network or stored to disk

• native
– Indicates that the method is implement using C or C++

Advanced Object Oriented Programming34 www.corewebprogramming.com

Comments and JavaDoc
• Java supports 3 types of comments

– // Comment to end of line.
– /* Block comment containing multiple lines.

Nesting of comments in not permitted. */
– /** A JavaDoc comment placed before class

definition and nonprivate methods.
Text may contain (most) HTML tags,
hyperlinks, and JavaDoc tags. */

• JavaDoc
– Used to generate on-line documentation

javadoc Foo.java Bar.java

– JavaDoc 1.4 Home Page
• http://java.sun.com/j2se/1.4/docs/tooldocs/javadoc/

Advanced Object Oriented Programming35 www.corewebprogramming.com

Useful JavaDoc Tags
• @author

– Specifies the author of the document
– Must use javadoc –author ... to generate in output

/** Description of some class ...
*
* @author
* Larry Brown
*/

• @version
– Version number of the document
– Must use javadoc –version ... to generate in output

• @param
– Documents a method argument

• @return
– Documents the return type of a method

Advanced Object Oriented Programming36 www.corewebprogramming.com

Useful JavaDoc Command-line
Arguments

• -author
– Includes author information (omitted by default)

• -version
– Includes version number (omitted by default)

• -noindex
– Tells javadoc not to generate a complete index

• -notree
– Tells javadoc not to generate the tree.html class hierarchy

• -link, -linkoffline
– Tells javadoc where to look to resolve links to other packages

-link http://java.sun.com/j2se/1.3/docs/api
-linkoffline http://java.sun.com/j2se/1.3/docs/api

c:\jdk1.3\docs\api

Advanced Object Oriented Programming37 www.corewebprogramming.com

JavaDoc, Example
/** Ship example to demonstrate OOP in Java.
*
* @author
* Larry Brown
* @version 2.0
*/

public class Ship {
private double x=0.0, y=0.0, speed=1.0, direction=0.0;
private String name;

/** Build a ship with specified parameters. */

public Ship(double x, double y, double speed,
double direction, String name) {

setX(x);
setY(y);
setSpeed(speed);
setDirection(direction);
setName(name);

}
...

Advanced Object Oriented Programming38 www.corewebprogramming.com

JavaDoc, Example
> javadoc -linkoffline http://java.sun.com/j2se/1.3/docs/api

c:\jdk1.3\docs\api
-author -version -noindex -notree Ship.java

Advanced Object Oriented Programming39 www.corewebprogramming.com

JavaDoc: Result

Advanced Object Oriented Programming40 www.corewebprogramming.com

Summary
• Overloaded methods/constructors, except

for the argument list, have identical
signatures

• Use extends to create a new class that
inherits from a superclass
– Java does not support multiple inheritance

• An inherited method in a subclass can be
overridden to provide custom behavior
– The original method in the parent class is accessible

through super.methodName(...)
• Interfaces contain only abstract methods

and constants
– A class can implement more than one interface

Advanced Object Oriented Programming41 www.corewebprogramming.com

Summary (Continued)
• With polymorphism, binding of a method to

a n object is determined at run-time
• The CLASSPATH defines in which directories

to look for classes
• Packages help avoid namespace collisions

– The package statement must be first statement in the
source file before any other statements

• The four visibility types are: public, private,
protected, and default (no modifier)
– Protected members can only cross package boundaries

through inheritance
– Default members are only inherited by classes in the

same package

42 © 2001-2003 Marty Hall, Larry Brown http://www.corewebprogramming.com

core

programming

Questions?

	Advanced Object-Oriented Programming in Java
	Agenda
	Example 4: Overloading
	Overloading (Continued)
	Overloading: Testing and Results
	Overloading: Major Points
	Example 5: OOP Design and Usage
	Example 5: Major Points
	Example 6: Inheritance
	Inheritance Example: Testing
	Inheritance Example: Result
	Example 6: Major Points
	Inheritance
	Inherited constructors and super(...)
	Overridden methods and super.method(...)
	Advanced OOP Topics
	Abstract Classes
	Abstract Classes (Continued)
	Interfaces
	Interfaces (Continued)
	Interfaces (Continued)
	Polymorphism
	Polymorphism: Example
	Polymorphism: Result
	CLASSPATH
	Creating Packages
	Package Directories
	Visibility Modifiers
	Visibility Modifiers, cont.
	Protected Visibility: Example
	Default Visibility: Example
	Visibility Summary
	Other Modifiers
	Comments and JavaDoc
	Useful JavaDoc Tags
	Useful JavaDoc Command-line Arguments
	JavaDoc, Example
	JavaDoc, Example
	JavaDoc: Result
	Summary
	Summary (Continued)
	Questions?

		brown@corewebprogramming.com
	2003-01-03T22:50:51-0500
	Lawrence M. Brown
	Copyright 2001-2003 Core Web Programming

